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Abstract 

HYDROGEN SULFIDE AS AN ALLOSTERIC MODULATOR OF ATP SENSITIVE 

POTASSIUM CHANNELS IN COLONIC INFLAMMATION 

by Aravind Reddy Gade 

A thesis submitted in partial fulfillment of the requirements for the degree of Masters of Science 
in Pharmacology at Virginia Commonwealth University. 

 
Virginia Commonwealth University, 2012 

 
Director: Hamid I. Akbarali, Ph.D. 

Professor, Department of Pharmacology and Toxicology 

The ATP sensitive potassium channel (KATP) in mouse colonic smooth muscle cell is a complex 

containing a pore forming subunit (Kir6.1) and a sulfonyl urea receptor subunit (SUR2B). These 

channels are responsible for maintaining the cellular excitability of the smooth muscle cell which 

in turn regulates the motility patterns in the colon. We used whole-cell voltage-clamp techniques 

to study the alterations in these channels in smooth muscle cells in experimental model of colitis 

(colonic inflammation). Colitis was induced in BALB/C mice following an intracolonic 

administration of trinitrobenzene sulfonic acid (TNBS). KATP currents were measured at Vh -60 

mV in high K+ external solution. The dose-response to levcromakalim (LEVC), a KATP channel 

opener, was significantly shifted to the left in the inflamed smooth muscle cells. Both the affinity 

and maximal currents induced by LEV were enhanced in inflammation. The EC50 in control was 

6259 nM (n=10) and 422 nM (n=8) in inflamed colon while the maximal currents were 9.9 ± 

0.71 pA/pF (60 μM) in control and 39.7 ± 8.8 pA/pF (3 μM) following inflammation. Similar to 

LEVC, KATP currents activated by sodium hydrogen sulfide (NaHS) (10-1000 μM) were 

significantly greater in inflamed compared to controls. In control cells, pretreatment with 100 
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µM NaHS shifted the EC50 for LEV-induced currents from 2838 nM (n=6) to 154 nM (n=8). 

These data suggest that NaHS can act as an allosteric modulator for LEV-induced KATP currents. 

Decreased colonic motility may result from enhanced KATP activation by increased release of 

H2S in colitis. 
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CHAPTER 1 INTRODUCTION 

Ulcerative colitis is a form of inflammatory bowel disease that usually occurs in the 

colon. The main symptom seen in this disease is altered motility patterns in the colon, leading to 

a bloody diarrhea or constipation. These alterations are assumed to be mediated through the 

decreased contractile force generated by the smooth muscle cell 21, 22, 23, 24. Contractility of the 

smooth muscle cell is primarily dependent on K+ and Ca+2 channels present on its membrane. 

Hence any alteration in the ion channel activity of colonic smooth muscle cell might alter the 

motility patterns in colon. 

Several earlier reports suggested a decrease in the activity of voltage gated Ca+2 channels (L-

type) of colonic smooth muscle cell in inflammation due to decreased expression or modification 

of the channel2, 3, 4. Apart from these reports, previous findings from our lab have shown an 

enhanced activity of ATP sensitive potassium channels (KATP) of the colonic smooth muscle cell 

in an experimental model of colitis (DSS)1. The underlying mechanism of this alteration was not 

clearly understood. As the name suggest, the activity of this channel is modulated by the 

intracellular concentration of ATP. Apart from this, recent reports also suggest the modulation of 

channel activity by different endogenous signaling molecules like H2S 17, 18, 19. Recent reports 

also suggest an increased activity of enzymes synthesizing H2S in ulcerative colitis15. This 

showed a possible involvement of endogenous H2S in the enhanced activity of KATP channels in 

ulcerative colitis. 

In the present study, we used electrophysiological techniques (Patch Clamp) to examine the 

alterations seen in the KATP channel currents in TNBS model of colonic inflammation 
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(experimental model of colitis) through a dose-response study and demonstrate that, the affinity 

and efficacy of KATP channel opener, Levc induced currents were enhanced in inflammation. We 

examined the effect of exogenous H2S on KATP channel in a similar setup and demonstrate that, 

H2S activated the channel at high concentrations and at low concentrations increased the 

sensitivity of the channel to the opener Levc. We conclude that this modulation of KATP channel 

activity by H2S might be a possible mechanism for the channel alteration in colonic 

inflammation. 
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CHAPTER 2 BACKGORUND 

 

2.1 Ulcerative Colitis: 

Ulcerative Colitis is a form of inflammatory bowel disease (IBD) seen in the colon. It is a 

disorder of modern society and its frequency has been increasing in developed countries since 

the mid-20th century. This relapsing and remitting disease is characterized with tissue 

inflammation and degradation. Inflammation is primarily restricted to the mucosal region of the 

wall of colon but in severe cases might go deep into the tissue. There is no known cause for this 

disease, but there is a presumed involvement of genetic component in its incidence. Evidence 

suggests that, defects in the immune system might lead to the incidence of the disease35, 36. At 

any point of time, 50% of the patients are asymptomatic while 30% of them have mild symptoms 

and 20% of them have severe symptoms. Primary symptom seen in this disease is the altered 

motility patterns in colon leading to either a bloody diarrhea or constipation21-24. A few extra 

intestinal symptoms are also seen in rare conditions. 

This disease is quite similar to Crohns disease in symptoms but differs in several other aspects. 

While ulcerative colitis is restricted to colon and rectum, Crohns may spread to any part of the 

GIT. The etiology and pathophysiology involved in the incidence of these diseases are different 

from each other. The treatment involved might be similar in both the cases, as they both involve 

defects in immune system35, 36.  
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2.2 ATP sensitive potassium channels (KATP): 

As the name suggests, these channels are sensitive to intracellular ATP and link the 

electrical activity of cell membrane to the cellular metabolism. KATP channels are hetero 

octomers comprised of two subunits, the sulfonylurea receptor subunit (SUR1 or SUR2A or 

SUR2B) and the inward rectifying pore forming K+ channel subunit (Kir 6.1 or Kir6.2). 

Association of these two subunits forms a functional channel on the cell membrane. Sulfonylurea 

receptor subunit provides the binding site for channel opener and blocker on the extracellular 

side, whereas the K+ channel subunit provides the binding site for ATP on the intracellular side34, 

38. Association of these subtypes of subunits is different in different parts of the body. This 

association of the sub-types of subunits determines the function of channel in the body. This 

combination of subunits also determines the sensitivity towards channel agonists and 

antagonists34, 12.  

KATP channels are known to play an important role in maintaining the contractility of the 

vascular smooth muscle cell through which it maintains the vascular tone and thus the blood 

pressure6-9. 

 KATP channels play a particularly important role in the pancreatic β cells, where it links the 

change in blood glucose to insulin secretion and modulates the uptake of glucose10-12. This 

functional role led to the discovery of drugs targeting KATP channels (sulfonylureas) for the 

treatment of diseases like type-2 diabetes13, 14. 

KATP channel in the colonic smooth muscle cell is a complex containing a pore forming K+ 

channel subunit (Kir6.1) and a sulfonyl urea receptor subunit (SUR2B)1. These channels are 

inwardly rectifying. At resting membrane potential these channels regulate the contractility of 
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the smooth muscle cell.  The activity of channel is thus crucial in maintaining the motility 

patterns of the colon5. The activity of this channel was found to be enhanced in an experimental 

model of colitis. This enhanced activity is assumed to responsible for the reduced contractile 

force of the muscle in colonic inflmattaion1.  

 

Diagramatic representation of the structure of ATP sensitive potassium channels. KATP 
channels in colonic smooth muscle cell are hetrooctomers formed by the association two 
subunits (SUR2B and Kir6.1). The central Kir6.1 subunit forms the channel pore through which 
the potassium ions move, whereas the SUR2B subunits are regulatory and associated to each 
Kir6.1 subunit34.  
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2.3 Hydrogen Sulfide (H2S): 

Hydrogen sulfide is a colorless toxic gas well known for its harmful effects. Research 

done in the past few years established that H2S is synthesized in different parts of the mammalian 

body. H2S is synthesized from the amino acid L-Cysteine by the enzymes Cystathionine β 

synthase (CBS) and Cystathionine γ lyase (CSE) 16, 17. Apart from these enzymes it is also known 

to be produced by the gut bacteria. H2S has been placed along with NO and CO in the list of 

gasotransmitters16, 46. Gasotransmitters are endogenously produced gaseous molecules known for 

their involvement in modulating physiological functions through different signaling processes.   

H2S signals by targeting the thiol groups of free cysteines residues on the target protein (s-

sulfhydration)17. Unlike nitrosylation of cysteine residues by NO, sulfhydration by H2S is a 

stimulating signal most of the time16. There are many targets in the mammalian body, which 

were shown to be sulfhydrated by exogenous H2S. Some of the important targets include ion 

channels like KATP channels and enzymes like GAPDH whose activity was increased upon 

sulfhydration with H2S
17, 18, 20, 48. Endogenously produced H2S was shown to be involved in the 

modulation of different physiological functions. Recent reports suggest H2S as an endothelium 

derived hyperpolarizing factor responsible for the vasodilatation of blood vessels through its 

action on KATP channels of vascular smooth muscle cell18. It is also shown to act on different 

enzymes like GAPDH in liver and increase their activity16. 

H2S is also assumed to play an important role in several diseases, primarily inflammation. Recent 

reports from Wallace et al.15 demonstrated an increased activity of the enzymes CBS and CSE in 

colonic inflammation. There were also other reports suggesting an increase in the sulphate 

reducing bacteria in patients with colonic inflammation37. These bacteria are known to produce 

H2S in the gut. These findings clearly showed a possibility of increased H2S levels in 
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inflammation. However, it is still argued if the role played by H2S is pro-inflammatory or anti-

inflammatory. 

The goal of this study is to identify if the increased H2S concentration is modulating the 

enhanced activity of KATP channel in colonic inflammation. To test this hypothesis we studied 

the correlation between the actions of H2S on KATP channels with the enhanced channel activity 

seen in colonic inflammation. 
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CHAPTER 3 MATERIALS AND METHODS 

3.1 Materials: 

TNBS (Tri-Nitro Benzene Sulfonic acid), Glib and Trypsin (from Bovine Pancrease) were 

purchased from Sigma. Levc was purchased from Tocris bioscience. Hydrogen sulfide was 

purchased from Cayman chemicals. Collagenase was purchased from Worthington (Lakewood, 

NJ). Serum Bovine Albumin was purchased from American Bio-Analytical. Sodium chloride 

(NaCl), magnesium chloride (MgCl2), calcium chloride (CaCl2), glucose, ATP disodium salt, 

HEPES, EGTA and tetraethylammonium chloride (TEA) were purchased from Sigma. MPO 

activity assay kit was purchased from Invitrogen. 

3.2 Animals:  

Adult male BALB/C mice that weighed 25-30g were housed in animal care quarters under a 

12:12 hr light-dark cycle with food and water. All the experiments were done according to 

protocols approved by the Virginia Commonwealth University IACUC. 

3.3 Methods:  

3.3.1 Induction of Inflammation:  

Inflammation was induced in the colon of the BALB/C mice through intracolonic administration 

of TNBS (0.1 ml). Weights of the mice were monitored on a daily basis and MPO assay was 

performed on the colon tissue at different time points after the administration of TNBS to 

determine the severity of inflammation. TNBS solution was prepared by diluting the stock with 

50% ethyl alcohol in 1:1 ratio. Vehicle controls were prepared by diluting 1X PBS solution with 

50% ethyl alcohol in 1:1 ratio. 
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3.3.2 MPO Assay: 

Colon samples were collected from control and inflamed mice. Cell lysate was prepared from 

these samples and centrifuged. Supernatant collected from centrifuged sample was used for the 

assay. Chlorination activity assay was performed to determine the MPO activity of the sample. 

Assay was performed as directed by the protocol provided along with the MPO assay kit.  

3.3.3 Cell-isolation:  

Smooth muscle cells were isolated from the colon of male BALB/C mice (25-30gms) as 

described previously1. Mice were euthanized and the colon was isolated. The colon was then cut 

open across the myenteric border and the mucosa is scrapped off to isolate the muscle layer. This 

whole process was carried out in a low calcium tyrode solution. The muscle layer was then cut 

into small pieces and transferred into tyrode solution containing 1.5 mg collagenase, 1mg trypsin 

and 5mg serum bovine albumin in 5ml for 10-12 minutes at 37oC. Then the tissue was subjected 

to gradual trituration with a flame polished glass bore. The partially digested tissue was then 

transferred into the enzyme free solution and subjected to further trituration and monitored under 

microscope to check for the dispersed cells. The dispersed cells were stored on ice and used 

within 6 hrs. All the electrophysiological recordings were done at room temperature (22-25oC). 

3.3.4 Electrical Recordings:  

Standard whole-cell configuration was used for all recordings. The Patch-clamp amplifier used 

was HEKA EPC 10. The micropipettes were prepared on a Flaming-Brown horizontal puller (P-

87; Sutter Instruments) and fire polished. Resistance of the pipettes used was 5-10MΩ. The 

currents were recorded in a gap-free protocol and an I-V protocol. In gap-free protocol, the cell 

was held at a voltage of -60mV and currents were measured continuously for a period of 15 mins 
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where as in I-V protocol, the cell was held at a voltage of -60mV and the currents were measured 

from the -120mV to 0 mV in series of pulses. 

3.3.5 Solutions:  

Different solutions were used for recordings in the whole-cell configuration. The solutions used 

are listed in the table 1. The low calcium tyrode solution was equilibrated with 95%O2 – 5%CO2.  

pH of all bathing solutions was adjusted to 7.4 using 3N KOH. The KATP currents were recorded 

in a High K+ (140 K+ External) external bath solution which specifically isolated and amplified 

the KATP currents by blocking other possible potassium channels. 

Table 1. Solutions used for cell isolation and electrophysiological recordings (values are in 

millimolar). 

 

 

Whole Cell 
Recording 

Low Ca+2 
Tyrode Internal 5 K+ External 140 K+ External

137 NaCl 
100 K+ 
asparate 135 NaCl 140 KCl

2.7 KCl 30 KCl 5.4 KCl 10 HEPES
0.008 CaCl2 5 HEPES 0.33 NaH2PO4 1 MgCl2 
0.88 MgCl2 1 MgCl2 5 HEPES 0.1 CaCl2 
0.36 NaH2PO4 10 EGTA 1 MgCl2 1 TEA 
12 NaHCO3 0.1 ATP 2 CaCl2 
5.5 Glucose 5.5 Glucose 
 

3.3.6 Data-Analysis:  

Sigma-Plot 11.0 was used for the analysis of the data and to plot the graphs. EC50 values were 

calculated using 4 parameter logistic nonlinear regression model in sigma plot. Significance 

levels were determined using unpaired t-tests. P≤0.05 was considered significant. 
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CHAPTER 4 RESULTS 

Mice treated with TNBS displayed a significant loss in weight on day 1 and 2 after the 

treatment. MPO assay performed with the colon tissues also displayed a significant increase in 

the MPO activity on day 1 and 2 after treatment with TNBS. This increase in the MPO activity 

also showed significant differences when compared with mice treated with control vehicle (Fig 

1). 

4.1 Enhancement of the KATP Channel opener induced currents in inflammation: 

In order to study the alterations in KATP channel activity in inflammation, currents were recorded 

from freshly dispersed smooth muscle cells of distal colon using the whole cell configuration of 

the voltage clamp technique. To identify the KATP channel currents, cells were bathed in a high 

K+ (140 mM) external bath solution, held at Vh -60 mV and dialyzed with low ATP (0.1 mM) in 

the pipette solution as previously described1.  Perfusion from a low (5.4 mM) to high K+ solution 

resulted in inward currents. The basal currents recorded in the high K+ solution were 0.9±0.12 

pA/pF (n=14) in controls, and 5.5 ±1.4 pA/pF (n=10) in colonic smooth muscle cells from TNBS 

treated mice (day 2 after treatment with TNBS), henceforth referred to as inflamed cells (Fig 

3A). The high K+-induced currents were abolished by Glib suggestive of increased basal activity 

of KATP in inflamed cells.  The average capacitance was 58.93±2.05 pF (n =39) in control and 

45.40±2.28 pF (n=20) in inflamed cells.  The KATP channel opener, Levc, further enhanced 

inward currents at -60 mV. The channel opener- induced currents measured after subtraction of 

baseline currents in high K+ showed a remarkable increase from  9.9±0.71 pA/pF (n=12) in 



www.manaraa.com

12 
 

control cells to 39.7 ± 8.8 pA/pF (n=10)  in cells from inflamed colon demonstrating an 

enhancement of almost 7 fold in inflammation (Fig: 3B).  

Test depolarizations from -120 mV to 0mV in 10 mV increments (Vh -60 mV) resulted in time-

independent and weakly voltage dependent currents.   Fig 4 and 5 shows current-voltage 

relationships for Levc-induced currents in control and inflamed cells in the presence of various 

concentrations of Levc.  Compared to control cells, inflamed cells induced significantly larger 

currents at each potential and were more sensitive to the channel opener.  A dose-response curve 

for Levc-induced currents was plotted at each voltage.  Fig 6 shows the dose-response at -60 mV 

for control (open circles) and inflamed (closed circles).  There was both a leftward shift in the 

dose-response and an enhancement of the maximal current in inflamed cells.  The significant 

shift in potency was evident when current amplitudes at each concentration were plotted as a 

fraction of the maxima (Fig 6B).  The EC50 values calculated for Levc shifted from 6259 nM 

(95% C.L: 4909 – 7625 nM) (n=10) in control cells to 422 nM (95% C.L: 273 – 522 nM) (n=8) 

in cells from the inflamed colon showing a tenfold difference. This suggested that inflammation 

results in both an increase in affinity and efficacy for the KATP channel opener.  To further 

examine whether there was a voltage-dependency to the affinity for Levc, Dose-response curves 

were plotted and the EC50 values were plotted for each potential (Fig 7A).  The EC50 values were 

not different at any of the different potentials with inflamed cells being more sensitive to Levc 

(Fig 7B). 
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Figure 1: Disease activity index. A: % decrease in the weight of animals after treatment with 
TNBS (n=13) and Saline (n=5). B: MPO activity in mice in control and after treatment with 
TNBS (n=4) and Saline (n=5). ***P<0.001, **P<0.01
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Figure 2: Levc induced currents in control and inflamed cells. A. Raw traces showing the 
inward current induced by the channel opener levc in a whole-cell recording of gap-free protocol 
at -60mV in the control and inflamed cells. 
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Figure 3: Amplitude of KATP currents in control and inflamed cells A: Normalized amplitude of 
basal KATP currents in control and inflamed cells. (con: 0.9±0.12 pA/pF, Inf: 5.5±1.4 pA/pF) B:  
normalized amplitude of levc (10µM) induced currents in control and inflamed cells. (con: 
9.9±0.71 pA/pF, Inf: 39.6±8.8 pA/pF) 
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Figure 4: Voltage and dose dependence of levc induced currents. Currents were recorded in a 
series of step voltages applied from -120 to 0mV in 10mV increments from a holding potential of 
-60mV in high K+ solution. A,B: current traces in high K+ and in different concentrations of 
levc in control and inflamed cells. Note the difference in scale bars.     



www.manaraa.com

17 
 

                   

Figure 5: Currents-voltage relationship. Current-voltage relationship with different 
concentrations of levc in control and inflamed cells.  
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Figure 6: Dose-response relation of levc. A: The normalized amplitude of current induced at 
each dose of levc measured at a holding voltage of -60mv in the smooth muscle cells from 
control and inflamed colon. B: The % of current induced at each dose of levc as a function of the 
maximum current induced at a holding voltage of -60mv in the smooth muscle cells of the 
control and inflamed colon. Con (n=10) Inf (n=8).  
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Figure 7:  Voltage dependence of calculated EC50. A: The normalized amplitude of current 
induced at each dose of levc measured at voltages ranging from 0mV to -120mV (Blue lines – 
Control, Red lines – Inflamed). B: Voltage dependence of calculated EC50 values in control and 
inflamed cells. 
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4.2 Effect of KATP channel blocker in inflammation: 

We next tested whether the KATP channel blocker, Glib demonstrated any difference in the 

potency towards inhibition of Levc-induced currents during inflammation.  A cumulative dose-

response for glibemclamide induced inhibition of the KATP currents were conducted in the 

presence of 10 uM Levc. (Fig: 8).   While there were significantly larger Levc-induced currents 

in inflamed cells, the dose-response relationship showed no difference in the potency of Glib to 

inhibit KATP  currents in control or inflamed cells.  The IC50 values were 183 nM(95% C.L: 154 – 

217nM) (n=6) in control and144 nM(95% C.L: 128 – 162nM) (n=5) in the cells from inflamed 

colon (Fig 9).    
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Figure 8: Effect of Glib on KATP channels in inflammation. Raw traces showing the inhibition of 
the levc induced currents by different concentrations of glib in a whole-cell recording through 
the gap-free protocol at -60mV in control and inflamed cells.  
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Figure 9: Dose-Response of Glib in control and inflamed cells. Dose-response curve plotted 
with the % of current inhibited at different concentrations of glib as a function of maximum 
current inhibited. Con (n=6) and Inf (n=5). 
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4.3 Effect of hydrogen sulfide on KATP channels of colonic smooth muscle cell: 

We next examined the effect of hydrogen sulfide, an endogenous signaling molecule whose 

levels have been shown to be increased in colonic inflammation15. Exogenous sodium hydrogen 

sulfide (NaHS) (1 mM) when added to the external bath solution induced inward currents at -

60mV in a gap-free protocol. The currents were abolished by Glib (10 uM). Similar to the effects 

of Levc, the inward currents activated by 1M NaHS were significantly larger in inflamed cells 

8.6±1.4 pA/pF (n=6) than control 2.47±0.1 pA/pF (n=7) 

We also tested the dose-dependence of NaHS in control and inflamed cells in a similar setup. 

There was a significant shift in the dose-response curve to the left in inflamed cells with an 

increase in the maximal currents.  When plotted as the fraction of maximal currents, the EC50 

values shifted from 461 µM (95% C.L: 376 – 564µM) (n=6) in control cells to 199 µM (95% 

C.L: 140 - 283µM) (n=6) in inflamed cells (Fig: 11B). 
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Figure 10: Effect of H2S on KATP channels of colonic smooth muscle cell. Raw traces showing 
the NaHS (H2S donor) induced currents in a whole cell recording at -60mV voltage through a 
gap-free protocol in control and inflamed cells.  
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Figure 11: Amplitude of H2S induced currents in control and inflamed cells A: Normalized 
amplitude of inward currents induced by NaHS in control and inflamed cells. (Con: 2.47±0.5 
pA/pF (n=6), Inf: 10.72±1.9 pA/pF (n=7)) B. The % of current induced at each dose of NaHS as 
a function of the maximum current induced at a holding voltage of -60mv in the smooth muscle 
cells of the control and inflamed colon. **P<0.01 
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4.4 Effect of H2S on KATP opener induced currents: 

In order to examine if NaHS acts as an alloesteric modulator of Levc-induced KATP currents, a 

low dose of the hydrogen sulfide (100µM) was bath applied prior to conducting Levc dose-

response. In presence of 100 uM, the currents activated were 0.47±0.04 pA/pF. In the presence 

of this concentration of the H2S the channel opener showed an increased affinity and induced 

currents at lower doses. The curve plotted shifted to the left and the EC50 values calculated 

shifted from 2838nM (95% C.L: 954 – 4625 nM) (n=6), In 100µM NaHS:154.9nM (95%C.L: 94 

– 251nM) (n=8) in the presence of 100µM NaHS (Fig 13) , demonstrating an increase in affinity 

of the drug similar to what was seen in the case of inflammation. At this concentration of NaHS, 

there was no increase in the maximal amplitude of current induced by Levcomakalim (Fig 13A). 

This study was repeated in the presence of a higher concentration of NaHS (1mM) where a 

maximal concentration of the channel opener (10µM) was used to induce KATP currents. The 

inward currents induced by the opener showed an increase from 10.5±1.6 pA/pF (n=6) in the 

presence of 100µM H2S to 22±5.4 pA/pF (n=5) in the presence of 1mM of H2S demonstrating an 

increase in the efficacy of the drug in the presence of higher concentration of hydrogen sulfide 

(Fig 14, 15). 
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Figure 12: Effect of H2S on levc induced currents. Current traces in the presence of different 
concentrations of levc in control and in the presence of 100µM NaHS. 
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Figure 13: Levc Dose-Response in the presence of H2S A: The amplitude of current induced at 
each dose of levcromakalim measured at a holding voltage of -60mv in the smooth muscle cell 
under control conditions (n=6) and in the presence of 100µM NaHS (n=8). B: The % of current 
induced at each dose of levcromakalim as a function of the maximum current induced at a 
holding voltage of -60mv in the smooth muscle cell under control conditions and in the presence 
of 100µM NaHS. 
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Figure 14: Response of Levc in 1mM NaHS. Current traces showing the response to Levc in 
control and in the presence of 1mM NaHS. 
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Figure 15: Levc induced currents in different concentrations of NaHS Amplitude of current 
induced by 10µM levc in the control cells and in the presence of different doses of NaHS (H2S 
donor). Amplitude of Lev-induced currents is enhanced in the presence of high NaHS 
demonstrating an increase in efficacy of levc. (Con: 9.9±0.71 pA/pF(n=6), Con+100µM NaHS: 
10.5±1.6  pA/pF(n=8), Con+1mM NaHS: 22±5.4  pA/pF(n=5)). 
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4.5 Effect of NEM on opener and H2S induced current: 

In order to examine the involvement of cysteine residues in the action of H2S, the effect of NEM 

(an alkylating agent of free cysteine residues) was tested on NaHS and Levc induced currents. In 

the presence of 2mM NEM, the responses produced by NaHS and Levc showed a huge decrease 

indicating a strong involvement of cysteine residues on their action (Fig 16) (NaHS induced 

currents reduced from 2.47±0.56 pA/pF in control to .0397±0.001 (n=4) in the presence of NEM. 

Levc induced currents reduced from 9.9±0.71 in control to 0.45±0.3 in the presence of NEM 

(n=4)) (Fig 17). 
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Figure 16: Effect of NEM on Levc and H2S induced currents. Current traces showing the 
response to Levc and NaHS in control and in the presence of 2mM NEM. 
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Figure 17: Amplitude of current inhibited by NEM. Bar-Graph showing the quantified 
differences in the amplitude of drug induced currents blocked by NEM. *** P<0.001 
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CHAPTER 5 DISCUSSION 

H2S was previously shown to play an important role in inflammation15, 19 and is also 

known to act on KATP channels 17, 18, 20. Therefore, we examined the correlation between the 

effect of H2S and the enhanced activity seen in KATP channel of colonic smooth muscle cell in 

inflammation. 

Ulcerative colitis is a form of inflammatory bowel disease (IBD) that usually occurs in the colon. 

There are frequent alterations seen in the motility patterns of colon in people with this disease 21, 

22, 23, 24. Previous studies have demonstrated changes in the ion channel activity of colonic 

smooth muscle cell which might be mediating these altered motility patterns. Previously, Jin et 

al.1 demonstrated an enhanced Levc induced whole cell and single channel activity of KATP 

channel in the colonic smooth muscle cell of DSS treated mice. To further examine this role of 

KATP channels in inflammation, we conducted a dose response study with the channel opener, 

Levc on the colonic smooth muscle cell of TNBS treated mice. Through this study we 

demonstrated an increase in basal activity (Fig: 3A) of the KATP channel along with a change in 

efficacy and potency of the channel opener Levc in colonic inflammation (Fig: 6). This study 

displayed that, colonic inflammation is associated with increased sensitivity of KATP channels of 

colonic smooth muscle cell towards the channel opener Levc. In a similar setup, a dose-response 

study was conducted with a KATP channel blocker Glib, whose effect didn’t show any significant 

enhancement in potency in the colonic smooth muscle cell of TNBS treated mice (Fig: 9). This 

suggests that, the colonic inflammation has induced an increase in sensitivity of KATP channel 

towards the channel opener but not the channel blocker. 
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H2S is a gaseous signaling molecule produced in different parts of the body. Previous reports 

from Wallace et al.15 demonstrated an increased capacity of the colonic tissue (Increased activity 

of enzymes CBS and CSE) to synthesize H2S in TNBS treated rats. These enzymes are known to 

be expressed in the smooth muscle cells, mucosal and myenteric neurons etc of the colon15, 39. 

Wallace study demonstrates a possibility of increased H2S concentrations in colon in 

inflammation which can expose the KATP channels to more amount of H2S. Wallace also showed 

that, upon inhibiting the synthesis of H2S or blocking the KATP channel increased the mortality 

rate in animals with colonic inflammation. This demonstrates that, H2S and KATP might play a 

protective role in colonic inflammation. KATP channel is a well established target of H2S, which 

was previously shown to activate the KATP channels in the different parts of the body 20, 25, 26, 27, 

29. In our study we demonstrated that, H2S induced activity of KATP channel in colonic smooth 

muscle cell is similar to that of a channel opener, Levc. Dose-response study conducted with H2S 

on smooth muscle cell from control and inflamed colon tissues also displayed a similar behavior 

as seen with Levc (Fig 11).  

Apart from that, our drug combination studies with H2S and Levc demonstrated an increase in 

potency of Levc in the presence of exogenous H2S (Fig: 6)… This increase in the potency was 

observed in the presence of lower concentrations of H2S (Fig 13). In the presence of higher 

concentrations of H2S, there was also an increase in the efficacy of the channel opener (Fig 15)... 

This behavior of Levc was similar to what was seen in the case of colonic inflammation. Our 

study along with Wallace previous reports, demonstrate a possibility of H2S mediated 

enhancement of KATP channel activity in colonic inflammation. 

H2S usually targets the thiol groups of free cysteine residues on the target protein and forms a 

persulfide (s-sulfhydration). It was well established in the literature by Snyder’s group and others 
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that, H2S signals through the s-sulfhydration of the free cysteine residues on the target protein16, 

17, 28. This signaling mechanism was assumed to modulate different physiological functions 16, 17, 

29. The mechanism involved or target sites involved in the H2S mediated effects on the KATP 

channels are not well understood. Mustafa et al.18 recently demonstaretd that, Kir 6.1 subunit of 

the KATP channel was sulfhydrated upon exposure to H2S through a biotin switch assay. Work 

done by Minho Kang in our lab used a similar approach to study the sulfhydration of the KATP 

channel in colonic smooth muscle after exposure to the H2S. We found that SUR2B subunit of 

the KATP channel gets sulfhydrated upon exposure to H2S. This sulfhydrated subunit might be 

mediating the H2S induced allosterism of the KATP channel.  

H2S induced effect can be reversed by reducing agents like DTT, which specifically break the 

disulfide bonds between the cysteine residues or can be inhibited upon pre-treatment with NEM, 

which alkylate the free cysteine residues and prevent s-sulfhydration. S-Sulfhydration of the 

SUR2B seen through the biotin switch assays was reversed upon treatment with DTT and was 

inhibited upon pretreatment with NEM (Kang et al. unpublished data). In contrast to the earlier 

results, H2S induced activity of the channel was not reversed after exposure to DTT (data not 

shown) but was completely inhibited upon pretreatment with NEM, an alkylating agent of free 

cysteine residues (Fig 16, 17). Not only H2S induced currents but also Levc induced currents 

were inhibited upon pretreatment with NEM. Thus the functional data along with the 

biochemical data demonstrated that, sulfhydration of cysteine residues of SUR2B is responsible 

for the activation produced by H2S. 

There is increasing evidence showing the contributions of H2S as a modulator of inflammation15, 

40, 41, 47. Although there were several earlier reports suggesting its contribution to the 

pathogenesis of ulcerative colitis and colon cancer42-45, there are also equal numbers of reports 
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suggesting its protective role. Moreover, Wallace previous study has shown the protective role of 

both H2S and KATP channel in colonic inflammation and results from the present study 

demonstrate the allosteric modulation of KATP channel by H2S but it is still to be determined if 

the protective role of H2S is mediated through the KATP channels. 
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CHAPTER 6 CONCLUSIONS AND FUTURE WORK 

6.1 Conclusion: 

In summary, the present study provides electrophysiological evidence showing an 

enhanced sensitivity of the KATP channel towards channel opener in colonic inflammation and in 

the presence of H2S. This correlation in the activity of KATP channel in inflammation and in the 

presence of H2S, along with previous reports display a possible role of H2S mediated 

enhancement of KATP channel activity in colonic inflammation. This study along with other 

biochemical evidence (Kang et al., unpublished data) in our lab demonstrated a possible 

mechanism involved in the action of H2S, which might be by an allosteric modulation through 

the s-sulfhydration of SUR2B subunit of the channel. 
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6.2 Future Work: 

The work done so far has shown the alterations seen in KATP channels in colonic 

inflammation and its allosteric modulation by H2S. Future studies can be done to identify the 

cysteine residues involved in the s-sulfhydration of the channel by H2S using a site directed 

mutagenesis. Behavioral studies can be done to identify on the role played by KATP channels and 

H2S in colonic inflammation.  
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